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Extremal properties of random trees
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We investigate extremal statistical properties such as the maximal and the minimal heights of randomly
generated binary trees. By analyzing the master evolution equations we show that the cumulative distribution
of extremal heights approaches a traveling wave form. The wave front in the minimal case is governed by the
small-extremal-height tail of the distribution, and conversely, the front in the maximal case is governed by the
large-extremal-height tail of the distribution. We determine several statistical characteristics of the extremal
height distribution analytically. In particular, the expected minimal and maximal heights grow logarithmically
with the tree sizeN, hpin~vminIN N, and hpa=vmaxIN N, With v,,;;=0.37336 . .. andv ,=4.3110 . . .,
respectively. Corrections to this asymptotic behavior are of ofém In N).
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Random trees play an important role in data storage antflass conservation implies th#t, the average number of
retrieval algorithms in computer scienf&—6]. They also leaves in a tree, grows linearly with tim&l=c 1=1+t.
arise in physical situations such as collision processes ilVhile the corresponding mass distribution has been exten-
gases [7], random fragmentation processg8,9], and sively studied in coalescence procegsiis1Z, we are inter-
diffusion-limited aggregatiof10]. In each case, extremal ested here in the distribution of extremal characteristics such
characteristics such as the maximal or the minimal height ofs the minimal and maximal number of bonds between the
the tree, namely, the maximg8] or the minimal[4] number tree root and its nodes. The leading behavior of the average
of bonds separating the tree root from a node are of interestf these distributions can be obtained from the following
In data storage algorithms, these distances yield the best-cagguitive argument.
or the worst-case-scenario performances. In kinetic theory, The distribution of tree heights, namely, of the distances
the largest Lyapunov exponent is related to the maximunbetween the tree root and the nodes can be obtained imme-
height problen7]. diately. Let P,,(t) be the probability that the distance be-
In this Rapid Communication, we study extremal proper-tween a randomly chosen leaf and the root of the parent tree
ties of randomly generated binary trees using rate equatioaqualsn at timet. As the tree generation process is random,
theory. Techniques developed in aggregation processes aRe(t) obeys Poisson statistics
well suited for treating random trees since the tree merger
process is simply an aggregation process. We study the dis- [h(t)]"
tributions of extremalboth minimal and maximalheights Pa(t)= ni e ", 2
of a tree. In both cases, the average extremal tree height '
grows logarithmically with the number of leaves and the
cumulative distribution of extremal tree heights approaches
traveling wave solution. The logarithmic growth prefactors
equal the traveling wave velocities, which are set by a veloc
ity selection principle. These velocities can be alternativel
obtained using a simplefand independeptintuitive argu-
ment. I_nterestingly, the wave "OF“ in the .mir_1im:_:1I case iSminimal number grows logarithmically as wellhyi,
Qetermlned_ by the smgll—helght tg;ul of the d|str|but|on., Wh”e.:vminln N. To estimateh, ., we sum the smalh tail of the
in the maximal case it is determined by the large-height tail : , oo T ) he o 1
of the distribution. normalized height distributiom™ P, to unity, = ™ic P,
Let us introduce the tree generation model. Initially, the=1. Substituting Egs.(1) and (2), the relation hy,
system consists of an infinite number of triviaingle-leaf ~ =UminIN N, and the Stirling formula In!~nInn—n into the
trees. Then, two trees are picked at random and attached tc@R0Ve relation we obtain the transcendental equation
common root. This merging process is repeated indefinitely
with rate set to 2 without loss of generality. Lett) be the | E_ 1 3
number density of trees at time Initially, ¢(0)=1, and vin v )
since this quantity evolves accordingdo/dt= —c? one has

with h(t) the average tree height. Consider a leaf in the
§ystem. Each time its corresponding tree merges with an-
other tree, the distance to the root is augmented by 1. This
process occurs with rate 2 and hentb/dt=2c. Integrating

this equation subject to the initial conditidn{0)=0 yields
h(t)=2 In(1+t)=2InN. One anticipates that the expected

This equation has two solutions with the lowgighen ve-
locity corresponding to the growth of the average minimal

1
c(t)= D (maxima) tree height. Indeed, repeating the above steps for

1+t°
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the maximal height using ,_ hmaxc‘an=1 againleadstothe  vA’(X)=A(X)—2(1—p)A(x—1)—(2p—1)A%(x—1),
same equation. Solving E¢B) yields (10

subject to the boundary conditios(—o)=1 and A(x)

=0. Fortunately, the velocity can be determined without
(4) solving the nonlinear nonlocal equati¢h0) exactly. To de-

terminev, it is enough to analyze the asymptotic behavior of

This probabilistic argument correctly predicts both veloci—tr;e _frotr: at one of islf\go t?;'i'i;ge:i/m fpo?5|deraélonfhap-
ties, and additionally, it demonstrates that the two extremap?y N e regionsp= andp= /2. We Tirst consider the

statistics are intimately related. We note that the latter maxi$aS€ l/&p<1. Here, Eq(10) admits an exponential solu-

mal height value has emerged from quite different calculaton In the sz_i"k tail, A(X)Hl._ e"* asx— — . Substitut-
tions in studies of collision processes in gaggkand frag- Ing this fo”“. in Eq.(10), we find that the yet to bg deter-
mentation processés,d]. mined velocityv and decay exponent are related via

We now turn to studying the entire distribution of ex- 1-2pe
tremal characteristics. Rather than considering the two ex- V= —8
tremal height distributions separately, we study a more gen- A
eral model which interpolates between the two cases. In thi
model, each tree carries an extremal heighthe result of a
merger between trees with extremal heigkisandk,, is a
new tree with extremal heigt given by

Nmin=UminINN, v min=0.373365;

hmac=UmaxdN N, vma=4.31107.

(11)

While a class of velocities is in principle possible, the extre-
mum value is selected for compact initial conditions. This
behavior is similar to velocity selection occurring for ex-
ample in the classic Fisher reaction-diffusion equation
min(k;,k,)+1  with prob. p [13,14. Evaluating this extremum yields a generalization of
_ 12 L (5) the transcendental equati¢d),

k= max(k;,k,)+1  with prob. 1-p.

2ep 1
Here,p is a mixing parameter whose limifs=1 andp=0 v lnTzl’ p>§. (12
correspond to the minimal and the maximal height problems,
respectively. In particular,y — 1 whenp—1/2. In the minimal height case
The number density of trees with extremal height,(t), (p=1) we recover the aforementioned valuey;,
evolves according to the master equation =0.373365. The selected decay coefficient satisfies

2p(1+\)=e€" and in the minimal cask =1.678 35.

dee - Let us now turn to the complementapy< 1/2 case where

H=ck,1—200k+2pck,lj§=:k ¢j+2(1- p)ck,ljzo Cj- contrary to thep>1/2 case, the large-extremal-height tail

(6) admits an exponentially decaying solutid{x)=e™**, as

Xx— +o. Here, the yet to be determined velocity and decay

Herec=3,_c; is the total tree density and one can verify coefficient are related via

that it indeed evolves according ttt/dt= — c2. The master "

equation(6) should be solved subject to the initial condition o= 2(1-pe’- 1_

ck(0)= . It proves useful to introduce the cumulative M

fractions

k—2

(13

Again, applying the velocity selection principle implies that
o0 the minimal possible velocity is selected. The selected decay
Ak:cfl'z Cj, (7) coefficient satisfies 2(2p)(1—u)=e * and the selected
=k velocity obeys

and a new time variable 2e(1-p)
In————=

1
v p<s. (14

¢ v ' 2
TIJ drc(7)=In(1+t). (8) . .
0 In the maximal case=0) one recovers the velocity,ay

=4.31107 and additionally, the decay coefficient s
These variables recast Ed§) into =0.768039. While we have not proved this selection prin-
ciple, our numerical integration of E¢Q) supports the find-
ings in the minimal and the maximal cases. We confirmed
that a traveling wave solution is indeed approached, and that
the selected velocities fall within 0.1% of the theoretical val-
which should be solved subject to the step function initialues. Curiously, this is a unique case where velocity selection
conditions,A,(0)=1 for k<0 andA,(0)=0 otherwise. is also supported by an independent physical argument.

In the long time limit,A,(T) approaches a traveling wave Interestingly, different mechanisms drive the front in the
form, A (T)—A(k—vT), with A(x) being a solution of the regionsp<<1/2 andp>1/2. In the regionp>1/2 which in-
nonlinear difference-differential equation cludes the minimal case, the small-extremal-height tail of the

dAk 2
47 = “AG2(L-pAC+(2p- DAL, (9)
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distribution dictates the velocity and in fact, the entire distri-A,(T) must vanish wheT—«, and(ii) G(z)~z for z—0
bution is enslaved to this exponential tail. The opposite igo ensure that\ (T) is independent ok for large k. The
true for p<1/2, which includes the maximal case. Here, theformer boundary condition selects one of the two possible
large-extremal-height tail of the distribution governs thespjutions, G(z)=C e*yz""DV(y), where  y=2z/\v,
wave velocity and the wave form. These behaviors are physi;=2(g\ —1), andD,(y) is the parabolic cylinder function
cal, especially when the limiting cases are considered: thg;ith index ». The second boundary condition fixes the index,
distribution of minimal(maxima) tree heights is governed ,,— 1 implying 3=3/(2\). Hence, we find that the expected

by extremely smalllarge fluctuations. The poinp.=1/2 extremal tree heightk)=c 1S kc,, grows withN as
can be regarded as a critical point. In particular, the different

velocity equationg12) and(14) imply nonanalytic behavior 3
atp.=1/2 wherev =1, and analysis of the leading behavior (K)=v InN+ oy ninN, (19
in the vicinity of this point yields

where the relationT=InN was used. Obviously, the latter
log-log correction cannot be obtained from the heuristic ar-
gument presented earlier. The same analysis can be carried
out for thep<<1/2 case where we find,

|U_Uc|:2|p_pc|1/2’ when p—p;. (15

Exact analysis of the special cage 1/2 is given below.
Asymptotically, while the wave front advances at a con-

stant ratev, there is a slowT ! correction in the leading 3

order, resulting in a logarithmic correction to the front posi- (Ky=v InN— =—InInN, (20)

tion. A similar correction was first derived by Bramson in the 2

context of reaction-diffusion equatiof$4], and was subse- ) )

quently generalizei15—17. We now calculate the leading With v andu given by Eqs(14), and(13), respectively. For

correction employing the approach of REE6]. Let us first ~completeness, we merely quote results of a more sophisti-

consider thep> 1/2 case. Substituting,(T) =1—a,(T) into cated approachl?] which allows calculation of the second

Eq. (9), and ignoring the quadratic teraf_,, yields leading correction to the growth rate
dak 3 1 3 T 32
— = —T 1 — /=T >1/2,
9T = T 2Pac 1. (16) (k) o1 ot 2 ool o P
N _ _ i X (21)
Substituting the scaling solution _ 2112 l_l_,g,z, 0<1/2.
2u u? 2v

a(T)=T*G(xT *)e", x=k—ovT-w(T) (17

We now return to the critical casp=1/2. The critical
behavior is simpler because E@) becomes linear, and it

tion to the front location isv(T)=InT. The former con- can be easily solved by the generating function method.

straint reflects a hidden diffusive scale and the latter givegom_l_ qu (936\ V‘,ie f|rt1_d . that ththe dgf?nereglr}g func:!on
the aforementioned logarithmic correction with yet undeter- (zT)=2=1Az"  satisfies € difierential - equation

) . - L dQ/dT=z+(z—1)Q(z,T), subject to the initial condition
mined amplitudeB. Substituting these behaviors in H4.6) 0(z0)=0. This  equation admits the solution

into Eq.(16) shows that different leading orders are compat-
ible provided that the exponent=1/2 and that the correc-

we get Q(z,T)=71-e ~2T])/(1-2), and expanding in powers
0=TY42pe *—1+\v)G(2)+ (v—2pe MG'(2) of z gives the cumulative distribution
Y U S V- B | *m
+T W[e NG"(z)+ 526G (z)+ 3 G(z)|[+--- Ak(T):e—TmE:k E (22)

The terms of the leading®(T¥? order cancel when
2pe M+ Av=1, i.e., when the velocity and the decay ex-
ponent\ are related through Eq11). The terms of order
O(1) cancel when ge *=v. Remarkably, this relation to-
gether with Eq(11) hold only in the extremal point where

and\ are given by Eqs(12) and(11), respectively. Finally,

the terms in the lowesD(T~ %) order cancel when the scal-

Using Eq.(7) andc(T)=e" T, we find that the extremal-
height distribution is proportional to a Poisson distribution,
c(T)=e 2TTk/k!. Asymptotically, the normalized height
distribution approaches a Gaussiaty, ¢, (T)—exd —(k
—T)22T]/\2=T, and the cumulative fractions easily follow,

ing functionG(z) satisfies the parabolic cylinder equation Ak(T)—>Eer k—T . (23
271 2T
d’G
vgZ T2, T (2R -1)G(2)=0. (18 Hence, both tails are Gaussian, consistent with the fact that

A=u=0 when p=1/2. Interestingly, the hidden diffusive
This differential equation should be solved subject to thescale becomes pronounced, and the wave front broadens in-
appropriate boundary condition$) G(z)—0 forz——« as  definitely with a width of the ordex/T.
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Thus far, we have considered closed systems where only, =2k 2 for largek. To summarize, we quot@ip to a nu-
trivial trees are initially present. However, in many applica- meric prefactor the three leading largk-behaviors
tions such as data storage algorithms, as well as in physical )
situations such as river networks3] and fragmentation pro- 22, p=1;
cesseq19], there may be a constant input into the system. _ _ ok .
We therefore consider the natural case where an initially Ci (1=p), O<p=<L; @9
empty system is subject to a uniform input of trivial trees. In k2, p=0.

th's case, we must add an add_ltl_o_nal mpu_t_te?m into the Thus, input dramatically alters the height distributions with a
right-hand side of Eq(6). The initial condition now reads \yige array of possible outcomes including double exponen-
c(0)=0. Thc_—:‘ overall density evolves according to tial, exponential, and algebraic decays.
dc/dt=1-c? ie.,c(t)=tanhf). Hence, the system eventu-  |n summary, we have shown that extremal properties of
ally reaches a steady state with density1. random trees can be obtained by analyzing the corresponding
We restrict our attention to the steady state distributionsonlinear evolution equations. The cumulative distributions
which can be obtained by equating the time derivatives in thef extremal tree heights approach a traveling wave solution.
master equationgb) to zero. Again, we introduce the cumu- The mean extremal values grow logarithmically with the tree
lative densitiedB, =" c;, which at the steady state satisfy size and there is an additional weak double logarithmic cor-

Bo=c=1 and rection. The corresponding growth velocities were obtained
from an elementary probabilistic argument and from an ex-
By=(1-p)By_1+(p— 1/2)B§,1 (24)  tremum selection criteria on the traveling wave solution. In-

terestingly, while the traveling wave velocity and form in the
for k=1. Three different behaviors arise depending onminimal case is determined by extremely small height fluc-
whetherp=1, 0<p<1, or p=0. For p=1, solving Eq. tuations, the opposite holds for the maximal case. The tran-
(24) recursively gives Bk=2‘(2k‘1). Therefore, ¢, sition between these two behaviors is marked by a sharp
:27(2‘&1)(1_2725’ implying that the minimal height dis- phase transition in a model which interpolates between the
tribution decays as an unusual double-exponential. For dwo extremal charactgristics. Additionally, we have showgd
<p<1, one can neglect the nonlinear term in E2f) in the that the presence of input may lead to double exponent_lal,
largek limit. Thence,B,~ (1— p)X implying a generic expo- e_xpc.)ner)tlal, or even algebralc 'decays of the extremal h'elght
nential decay of the distribution, at largek. The critical ~ distribution. It will be interesting to apply rate equation
behavior disappears and the only notable feature ofpthe theor_y to a_closel_y related random tree characteristics, e.g.,
=1/2 case is that it is exactly solvablB,=2"X. For the the bifurcation ratio and the rarjé0,18.
maximal height problemd=0), the recursior(24) simpli- We are thankful to M. B. Hastings and Z. Toroczkai for
fies (in the largek limit) to a differential equation interesting discussions, and to the U.S. D@®ntract No.
dB/dk=—B?/2, which is solved to giveB,=2k . Thus, W-7405-ENG-36 and NSF (DMR9978902 for financial
the maximal height distribution exhibits a power-law decay,support.
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