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Extremal properties of random trees
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We investigate extremal statistical properties such as the maximal and the minimal heights of randomly
generated binary trees. By analyzing the master evolution equations we show that the cumulative distribution
of extremal heights approaches a traveling wave form. The wave front in the minimal case is governed by the
small-extremal-height tail of the distribution, and conversely, the front in the maximal case is governed by the
large-extremal-height tail of the distribution. We determine several statistical characteristics of the extremal
height distribution analytically. In particular, the expected minimal and maximal heights grow logarithmically
with the tree size,N, hmin;vmin ln N, and hmax;vmaxln N, with vmin50.373365 . . . andvmax54.31107 . . . ,
respectively. Corrections to this asymptotic behavior are of orderO(ln ln N).
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Random trees play an important role in data storage
retrieval algorithms in computer science@1–6#. They also
arise in physical situations such as collision processe
gases @7#, random fragmentation processes@8,9#, and
diffusion-limited aggregation@10#. In each case, extrema
characteristics such as the maximal or the minimal heigh
the tree, namely, the maximal@3# or the minimal@4# number
of bonds separating the tree root from a node are of inter
In data storage algorithms, these distances yield the best-
or the worst-case-scenario performances. In kinetic the
the largest Lyapunov exponent is related to the maxim
height problem@7#.

In this Rapid Communication, we study extremal prop
ties of randomly generated binary trees using rate equa
theory. Techniques developed in aggregation processes
well suited for treating random trees since the tree mer
process is simply an aggregation process. We study the
tributions of extremal~both minimal and maximal! heights
of a tree. In both cases, the average extremal tree he
grows logarithmically with the number of leaves and t
cumulative distribution of extremal tree heights approache
traveling wave solution. The logarithmic growth prefacto
equal the traveling wave velocities, which are set by a vel
ity selection principle. These velocities can be alternativ
obtained using a simpler~and independent! intuitive argu-
ment. Interestingly, the wave front in the minimal case
determined by the small-height tail of the distribution, wh
in the maximal case it is determined by the large-height
of the distribution.

Let us introduce the tree generation model. Initially, t
system consists of an infinite number of trivial~single-leaf!
trees. Then, two trees are picked at random and attached
common root. This merging process is repeated indefini
with rate set to 2 without loss of generality. Letc(t) be the
number density of trees at timet. Initially, c(0)51, and
since this quantity evolves according todc/dt52c2 one has

c~ t !5
1

11t
. ~1!
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Mass conservation implies thatN, the average number o
leaves in a tree, grows linearly with time,N5c21511t.
While the corresponding mass distribution has been ex
sively studied in coalescence processes@11,12#, we are inter-
ested here in the distribution of extremal characteristics s
as the minimal and maximal number of bonds between
tree root and its nodes. The leading behavior of the aver
of these distributions can be obtained from the followi
intuitive argument.

The distribution of tree heights, namely, of the distanc
between the tree root and the nodes can be obtained im
diately. Let Pn(t) be the probability that the distance b
tween a randomly chosen leaf and the root of the parent
equalsn at time t. As the tree generation process is rando
Pn(t) obeys Poisson statistics

Pn~ t !5
@h~ t !#n

n!
e2h(t), ~2!

with h(t) the average tree height. Consider a leaf in t
system. Each time its corresponding tree merges with
other tree, the distance to the root is augmented by 1. T
process occurs with rate 2 and hence,dh/dt52c. Integrating
this equation subject to the initial conditionh(0)50 yields
h(t)52 ln(11t)52 lnN. One anticipates that the expecte
minimal number grows logarithmically as well,hmin
.vmin ln N. To estimatehmin we sum the small-n tail of the
normalized height distributionc21Pn to unity, (n50

hminc21Pn

51. Substituting Eqs.~1! and ~2!, the relation hmin
.vmin ln N, and the Stirling formula lnn!;n ln n2n into the
above relation we obtain the transcendental equation

v ln
2e

v
51. ~3!

This equation has two solutions with the lower~higher! ve-
locity corresponding to the growth of the average minim
~maximal! tree height. Indeed, repeating the above steps
©2001 The American Physical Society01-1
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the maximal height using(n5hmax

` c21Pn51 again leads to the

same equation. Solving Eq.~3! yields

hmin.vmin ln N, vmin50.373365;
~4!

hmax.vmaxln N, vmax54.31107.

This probabilistic argument correctly predicts both velo
ties, and additionally, it demonstrates that the two extre
statistics are intimately related. We note that the latter ma
mal height value has emerged from quite different calcu
tions in studies of collision processes in gases@7# and frag-
mentation processes@8,9#.

We now turn to studying the entire distribution of e
tremal characteristics. Rather than considering the two
tremal height distributions separately, we study a more g
eral model which interpolates between the two cases. In
model, each tree carries an extremal heightk. The result of a
merger between trees with extremal heightsk1 and k2, is a
new tree with extremal heightk given by

k5H min~k1 ,k2!11 with prob. p,

max~k1 ,k2!11 with prob. 12p.
~5!

Here,p is a mixing parameter whose limitsp51 andp50
correspond to the minimal and the maximal height proble
respectively.

The number density of trees with extremal heightk, ck(t),
evolves according to the master equation

dck

dt
5ck21

2 22cck12pck21(
j 5k

`

cj12~12p!ck21(
j 50

k22

cj .

~6!

Herec5( j >0cj is the total tree density and one can ver
that it indeed evolves according todc/dt52c2. The master
equation~6! should be solved subject to the initial conditio
ck(0)5dk,0 . It proves useful to introduce the cumulativ
fractions

Ak5c21(
j 5k

`

cj , ~7!

and a new time variable

T5E
0

t

dtc~t!5 ln~11t !. ~8!

These variables recast Eqs.~6! into

dAk

dT
52Ak12~12p!Ak211~2p21!Ak21

2 , ~9!

which should be solved subject to the step function ini
conditions,Ak(0)51 for k<0 andAk(0)50 otherwise.

In the long time limit,Ak(T) approaches a traveling wav
form, Ak(T)→A(k2vT), with A(x) being a solution of the
nonlinear difference-differential equation
03510
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vA8~x!5A~x!22~12p!A~x21!2~2p21!A2~x21!,
~10!

subject to the boundary conditionsA(2`)51 and A(`)
50. Fortunately, the velocityv can be determined withou
solving the nonlinear nonlocal equation~10! exactly. To de-
terminev, it is enough to analyze the asymptotic behavior
the front at one of its two tails. Different considerations a
ply in the regionsp<1/2 andp>1/2. We first consider the
case 1/2<p<1. Here, Eq.~10! admits an exponential solu
tion in the small-k tail, A(x)→12elx asx→2`. Substitut-
ing this form in Eq.~10!, we find that the yet to be deter
mined velocityv and decay exponentl are related via

v5
122pe2l

l
. ~11!

While a class of velocities is in principle possible, the ext
mum value is selected for compact initial conditions. Th
behavior is similar to velocity selection occurring for e
ample in the classic Fisher reaction-diffusion equat
@13,14#. Evaluating this extremum yields a generalization
the transcendental equation~3!,

v ln
2ep

v
51, p.

1

2
. ~12!

In particular,v→1 whenp→1/2. In the minimal height case
(p51) we recover the aforementioned valuevmin
50.373 365. The selected decay coefficient satis
2p(11l)5el and in the minimal casel51.678 35.

Let us now turn to the complementaryp,1/2 case where
contrary to thep.1/2 case, the large-extremal-height ta
admits an exponentially decaying solutionA(x)5e2mx, as
x→1`. Here, the yet to be determined velocity and dec
coefficient are related via

v5
2~12p!em21

m
. ~13!

Again, applying the velocity selection principle implies th
the minimal possible velocity is selected. The selected de
coefficient satisfies 2(12p)(12m)5e2m and the selected
velocity obeys

v ln
2e~12p!

v
51, p,

1

2
. ~14!

In the maximal case (p50) one recovers the velocityvmax
54.311 07 and additionally, the decay coefficient ism
50.768 039. While we have not proved this selection pr
ciple, our numerical integration of Eq.~9! supports the find-
ings in the minimal and the maximal cases. We confirm
that a traveling wave solution is indeed approached, and
the selected velocities fall within 0.1% of the theoretical v
ues. Curiously, this is a unique case where velocity selec
is also supported by an independent physical argument.

Interestingly, different mechanisms drive the front in t
regionsp,1/2 andp.1/2. In the regionp.1/2 which in-
cludes the minimal case, the small-extremal-height tail of
1-2
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distribution dictates the velocity and in fact, the entire dis
bution is enslaved to this exponential tail. The opposite
true for p,1/2, which includes the maximal case. Here, t
large-extremal-height tail of the distribution governs t
wave velocity and the wave form. These behaviors are ph
cal, especially when the limiting cases are considered:
distribution of minimal~maximal! tree heights is governe
by extremely small~large! fluctuations. The pointpc51/2
can be regarded as a critical point. In particular, the differ
velocity equations~12! and ~14! imply nonanalytic behavior
at pc51/2 wherevc51, and analysis of the leading behavi
in the vicinity of this point yields

uv2vcu.2up2pcu1/2, when p→pc . ~15!

Exact analysis of the special casep51/2 is given below.
Asymptotically, while the wave front advances at a co

stant ratev, there is a slowT21 correction in the leading
order, resulting in a logarithmic correction to the front po
tion. A similar correction was first derived by Bramson in t
context of reaction-diffusion equations@14#, and was subse
quently generalized@15–17#. We now calculate the leadin
correction employing the approach of Ref.@16#. Let us first
consider thep.1/2 case. SubstitutingAk(T)512ak(T) into
Eq. ~9!, and ignoring the quadratic termak21

2 , yields

dak

dT
52ak12pak21 . ~16!

Substituting the scaling solution

ak~T!5TaG~x T2a!elx, x5k2vT2w~T! ~17!

into Eq.~16! shows that different leading orders are comp
ible provided that the exponenta51/2 and that the correc
tion to the front location isw(T)5b ln T. The former con-
straint reflects a hidden diffusive scale and the latter gi
the aforementioned logarithmic correction with yet undet
mined amplitudeb. Substituting these behaviors in Eq.~16!
we get

05T1/2~2pe2l211lv !G~z!1~v22pe2l!G8~z!

1T21/2Fe2lG9~z!1
1

2
zG8~z!1

2lb21

2
G~z!G1•••

The terms of the leadingO(T1/2) order cancel when
2pe2l1lv51, i.e., when the velocityv and the decay ex
ponentl are related through Eq.~11!. The terms of order
O(1) cancel when 2pe2l5v. Remarkably, this relation to
gether with Eq.~11! hold only in the extremal point wherev
andl are given by Eqs.~12! and ~11!, respectively. Finally,
the terms in the lowestO(T21/2) order cancel when the sca
ing functionG(z) satisfies the parabolic cylinder equation

v
d2G

dz2 1z
dG

dz
1~2bl21!G~z!50. ~18!

This differential equation should be solved subject to
appropriate boundary conditions:~i! G(z)→0 for z→2` as
03510
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Ak(T) must vanish whenT→`, and ~ii ! G(z);z for z→0
to ensure thatAk(T) is independent ofk for large k. The
former boundary condition selects one of the two possi
solutions, G(z)5C e2y2/4 Dn(y), where y5z/Av,
n52(bl21), andDn(y) is the parabolic cylinder function
with indexn. The second boundary condition fixes the inde
n51, implyingb53/(2l). Hence, we find that the expecte
extremal tree height,̂k&5c21(kkck , grows withN as

^k&5v ln N1
3

2l
ln ln N, ~19!

where the relationT5 ln N was used. Obviously, the latte
log-log correction cannot be obtained from the heuristic
gument presented earlier. The same analysis can be ca
out for thep,1/2 case where we find,

^k&5v ln N2
3

2m
ln ln N, ~20!

with v andm given by Eqs.~14!, and~13!, respectively. For
completeness, we merely quote results of a more soph
cated approach@17# which allows calculation of the secon
leading correction to the growth rate

d^k&
dT

55
3

2l
T211

3

l2
A p

2v
T23/2, p.1/2,

2
3

2m
T211

3

m2
A p

2v
T23/2, p,1/2.

~21!

We now return to the critical casep51/2. The critical
behavior is simpler because Eq.~9! becomes linear, and i
can be easily solved by the generating function meth
From Eq. ~9! we find that the generating functio
Q(z,T)5(k>1Akz

k satisfies the differential equatio
dQ/dT5z1(z21)Q(z,T), subject to the initial condition
Q(z,0)50. This equation admits the solutio
Q(z,T)5z@12e2(12z)T#/(12z), and expanding in powers
of z gives the cumulative distribution

Ak~T!5e2T (
m5k

`
Tm

m!
. ~22!

Using Eq. ~7! and c(T)5e2T, we find that the extremal-
height distribution is proportional to a Poisson distributio
ck(T)5e22TTk/k!. Asymptotically, the normalized heigh
distribution approaches a Gaussian,c21ck(T)→exp@2(k
2T)2/2T#/A2pT, and the cumulative fractions easily follow

Ak~T!→ 1

2
erfFk2T

A2T
G . ~23!

Hence, both tails are Gaussian, consistent with the fact
l5m50 when p51/2. Interestingly, the hidden diffusive
scale becomes pronounced, and the wave front broaden
definitely with a width of the orderAT.
1-3
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Thus far, we have considered closed systems where
trivial trees are initially present. However, in many applic
tions such as data storage algorithms, as well as in phys
situations such as river networks@18# and fragmentation pro
cesses@19#, there may be a constant input into the syste
We therefore consider the natural case where an initi
empty system is subject to a uniform input of trivial trees.
this case, we must add an additional input termdk,0 into the
right-hand side of Eq.~6!. The initial condition now reads
ck(0)50. The overall density evolves according
dc/dt512c2, i.e.,c(t)5tanh(t). Hence, the system eventu
ally reaches a steady state with densityc51.

We restrict our attention to the steady state distributio
which can be obtained by equating the time derivatives in
master equations~6! to zero. Again, we introduce the cumu
lative densitiesBk5( j 5k

` cj , which at the steady state satis
B05c51 and

Bk5~12p!Bk211~p21/2!Bk21
2 ~24!

for k>1. Three different behaviors arise depending
whether p51, 0,p,1, or p50. For p51, solving Eq.
~24! recursively gives Bk522(2k21). Therefore, ck

522(2k21)(12222k
), implying that the minimal height dis

tribution decays as an unusual double-exponential. Fo
,p,1, one can neglect the nonlinear term in Eq.~24! in the
large-k limit. Thence,Bk;(12p)k implying a generic expo-
nential decay of the distributionck at largek. The critical
behavior disappears and the only notable feature of thp
51/2 case is that it is exactly solvable,Bk522k. For the
maximal height problem (p50), the recursion~24! simpli-
fies ~in the large-k limit ! to a differential equation
dB/dk52B2/2, which is solved to giveBk.2k21. Thus,
the maximal height distribution exhibits a power-law dec
t-

et
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ck.2k22 for largek. To summarize, we quote~up to a nu-
meric prefactor! the three leading large-k behaviors

ck;H 222k
, p51;

~12p!k, 0,p,1;

k22, p50.

~25!

Thus, input dramatically alters the height distributions with
wide array of possible outcomes including double expon
tial, exponential, and algebraic decays.

In summary, we have shown that extremal properties
random trees can be obtained by analyzing the correspon
nonlinear evolution equations. The cumulative distributio
of extremal tree heights approach a traveling wave solut
The mean extremal values grow logarithmically with the tr
size and there is an additional weak double logarithmic c
rection. The corresponding growth velocities were obtain
from an elementary probabilistic argument and from an
tremum selection criteria on the traveling wave solution.
terestingly, while the traveling wave velocity and form in th
minimal case is determined by extremely small height flu
tuations, the opposite holds for the maximal case. The tr
sition between these two behaviors is marked by a sh
phase transition in a model which interpolates between
two extremal characteristics. Additionally, we have show
that the presence of input may lead to double exponen
exponential, or even algebraic decays of the extremal he
distribution. It will be interesting to apply rate equatio
theory to a closely related random tree characteristics, e
the bifurcation ratio and the rank@10,18#.
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